Federated Learning Governance
Overview
The Savitri Network Federated Learning (FL) governance system enables decentralized AI model training and validation through blockchain-based coordination. The system provides a secure framework for model distribution, federated training, and reward distribution while maintaining privacy and data sovereignty.
FL Architecture
Core Components
pub struct FLGovernance {
pub policy_manager: FLPolicyManager, // Policy management
pub model_registry: ModelRegistry, // Model registry
pub aggregator_whitelist: Whitelist, // Aggregator whitelist
pub training_coordinator: TrainingCoordinator, // Training coordination
pub reward_distributor: RewardDistributor, // Reward distribution
}
FL Policy Management
pub struct FLPolicy {
pub fee_treasury_bps: u16, // Fee percentage to treasury
pub max_models: u32, // Maximum active models
pub min_participants: u32, // Minimum participants
pub whitelist_aggregators: Vec<Vec<u8>>, // Approved aggregators
pub min_reputation: f64, // Minimum reputation score
pub model_approval_required: bool, // Require model approval
pub privacy_requirements: PrivacyRequirements, // Privacy requirements
pub training_parameters: TrainingParameters, // Training parameters
}
pub struct PrivacyRequirements {
pub differential_privacy: bool, // Differential privacy
pub min_noise_level: f64, // Minimum noise level
pub max_data_points_per_participant: u32, // Max data points per participant
pub data_encryption: bool, // Data encryption required
pub audit_trail: bool, // Audit trail required
}
pub struct TrainingParameters {
pub max_rounds: u32, // Maximum training rounds
pub min_accuracy: f64, // Minimum accuracy
pub convergence_threshold: f64, // Convergence threshold
pub timeout_per_round: Duration, // Timeout per round
pub communication_budget: u64, // Communication budget
}
Model Registry
Model Registration
pub struct ModelRegistration {
pub model_id: Vec<u8>, // Model identifier
pub creator: Vec<u8>, // Creator address
pub model_type: ModelType, // Model type
pub model_version: String, // Model version
pub model_hash: Vec<u8>, // Model content hash
pub metadata: ModelMetadata, // Model metadata
pub training_requirements: TrainingRequirements, // Training requirements
pub approval_status: ApprovalStatus, // Approval status
pub registration_timestamp: u64, // Registration timestamp
}
pub struct ModelMetadata {
pub name: String, // Model name
pub description: String, // Model description
pub input_shape: Vec<usize>, // Input shape
pub output_shape: Vec<usize>, // Output shape
pub parameters: ModelParameters, // Model parameters
pub performance_metrics: PerformanceMetrics, // Performance metrics
pub use_cases: Vec<String>, // Use cases
}
pub struct ModelParameters {
pub total_parameters: u64, // Total parameters
pub trainable_parameters: u64, // Trainable parameters
pub model_size_mb: f64, // Model size in MB
pub inference_time_ms: f64, // Inference time
pub training_time_per_epoch: f64, // Training time per epoch
pub memory_requirement_mb: f64, // Memory requirement
}
Model Approval Process
pub struct ModelApproval {
pub model_id: Vec<u8>, // Model identifier
pub approval_votes: u128, // Approval votes
pub rejection_votes: u128, // Rejection votes
pub total_voting_power: u128, // Total voting power
pub approval_threshold: f64, // Approval threshold
pub review_period: Duration, // Review period
pub technical_review: TechnicalReview, // Technical review
pub security_review: SecurityReview, // Security review
}
pub struct TechnicalReview {
pub code_quality: QualityScore, // Code quality score
pub performance_score: PerformanceScore, // Performance score
pub architecture_review: ArchitectureReview, // Architecture review
pub compliance_check: ComplianceCheck, // Compliance check
pub reviewer_comments: Vec<String>, // Reviewer comments
}
pub struct SecurityReview {
pub vulnerability_scan: VulnerabilityScan, // Vulnerability scan
pub privacy_analysis: PrivacyAnalysis, // Privacy analysis
pub data_protection: DataProtection, // Data protection
pub access_control: AccessControl, // Access control
pub security_rating: SecurityRating, // Security rating
}
Training Coordination
Training Round Management
pub struct TrainingRound {
pub round_id: u64, // Round identifier
pub model_id: Vec<u8], // Model identifier
pub aggregator: Vec<u8>, // Aggregator address
pub participants: Vec<Participant>, // Participants
pub training_parameters: TrainingParameters, // Training parameters
pub start_time: u64, // Start time
pub end_time: u64, // End time
pub status: RoundStatus, // Round status
pub results: Option<TrainingResults>, // Training results
}
pub struct Participant {
pub participant_id: Vec<u8>, // Participant identifier
pub reputation_score: f64, // Reputation score
pub data_contribution: DataContribution, // Data contribution
pub training_power: f64, // Training power
pub availability: Availability, // Availability
pub privacy_level: PrivacyLevel, // Privacy level
}
pub struct DataContribution {
pub data_points: u32, // Data points contributed
pub data_quality: f64, // Data quality score
pub data_diversity: f64, // Data diversity score
pub privacy_budget: f64, // Privacy budget used
pub contribution_hash: Vec<u8>, // Contribution hash
}
Training Execution
pub struct TrainingExecution {
pub round_id: u64, // Round identifier
pub participants: Vec<TrainingParticipant>, // Training participants
pub training_plan: TrainingPlan, // Training plan
pub communication_protocol: CommunicationProtocol, // Communication protocol
pub aggregation_method: AggregationMethod, // Aggregation method
pub privacy_preservation: PrivacyPreservation, // Privacy preservation
}
pub struct TrainingPlan {
pub epochs_per_round: u32, // Epochs per round
pub batch_size: u32, // Batch size
pub learning_rate: f64, // Learning rate
pub optimization_algorithm: OptimizationAlgorithm, // Optimization algorithm
pub convergence_criteria: ConvergenceCriteria, // Convergence criteria
pub resource_allocation: ResourceAllocation, // Resource allocation
}
pub struct PrivacyPreservation {
pub differential_privacy: DifferentialPrivacy, // Differential privacy
pub secure_aggregation: SecureAggregation, // Secure aggregation
pub data_encryption: DataEncryption, // Data encryption
pub noise_injection: NoiseInjection, // Noise injection
pub audit_logging: AuditLogging, // Audit logging
}
Aggregator Management
Aggregator Whitelist
pub struct AggregatorWhitelist {
pub approved_aggregators: Vec<ApprovedAggregator>, // Approved aggregators
pub reputation_requirements: ReputationRequirements, // Reputation requirements
pub technical_requirements: TechnicalRequirements, // Technical requirements
pub security_requirements: SecurityRequirements, // Security requirements
pub performance_requirements: PerformanceRequirements, // Performance requirements
}
pub struct ApprovedAggregator {
pub aggregator_id: Vec<u8>, // Aggregator identifier
pub operator: Vec<u8], // Operator address
pub reputation_score: f64, // Reputation score
pub technical_capabilities: TechnicalCapabilities, // Technical capabilities
pub security_certifications: Vec<SecurityCertification>, // Security certifications
pub performance_metrics: AggregatorPerformance, // Performance metrics
pub whitelist_expiry: u64, // Whitelist expiry
}
pub struct TechnicalCapabilities {
pub max_participants: u32, // Maximum participants
pub supported_model_types: Vec<ModelType>, // Supported model types
pub aggregation_methods: Vec<AggregationMethod>, // Aggregation methods
pub communication_protocols: Vec<CommunicationProtocol>, // Communication protocols
pub compute_resources: ComputeResources, // Compute resources
pub network_bandwidth: u64, // Network bandwidth
}
Aggregator Performance
pub struct AggregatorPerformance {
pub rounds_completed: u64, // Rounds completed
pub average_participants: f64, // Average participants
pub average_accuracy: f64, // Average accuracy
pub average_training_time: Duration, // Average training time
pub success_rate: f64, // Success rate
pub participant_satisfaction: f64, // Participant satisfaction
pub security_incidents: u64, // Security incidents
}
impl AggregatorPerformance {
pub fn calculate_performance_score(&self) -> f64 {
let success_weight = 0.3;
let accuracy_weight = 0.25;
let participation_weight = 0.2;
let speed_weight = 0.15;
let security_weight = 0.1;
let success_score = self.success_rate * success_weight;
let accuracy_score = self.average_accuracy * accuracy_weight;
let participation_score = (self.average_participants / 100.0) * participation_weight;
let speed_score = (1.0 / self.average_training_time.as_secs_f64() / 3600.0) * speed_weight;
let security_score = (1.0 - (self.security_incidents as f64 / self.rounds_completed as f64)) * security_weight;
success_score + accuracy_score + participation_score + speed_score + security_score
}
}
Reward Distribution
Reward Calculation
pub struct RewardCalculator {
pub base_reward_rate: f64, // Base reward rate
pub quality_multiplier: f64, // Quality multiplier
pub participation_multiplier: f64, // Participation multiplier
pub reputation_multiplier: f64, // Reputation multiplier
pub privacy_bonus: f64, // Privacy bonus
}
impl RewardCalculator {
pub fn calculate_participant_reward(&self, participant: &Participant, round: &TrainingRound) -> u128 {
// 1. Base reward
let base_reward = self.base_reward_rate * participant.data_contribution.data_points as f64;
// 2. Quality multiplier
let quality_multiplier = participant.data_contribution.data_quality * self.quality_multiplier;
// 3. Participation multiplier
let participation_multiplier = if participant.availability.is_available() {
self.participation_multiplier
} else {
self.participation_multiplier * 0.5
};
// 4. Reputation multiplier
let reputation_multiplier = participant.reputation_score * self.reputation_multiplier;
// 5. Privacy bonus
let privacy_bonus = match participant.privacy_level {
PrivacyLevel::High => self.privacy_bonus * 2.0,
PrivacyLevel::Medium => self.privacy_bonus * 1.5,
PrivacyLevel::Low => self.privacy_bonus * 1.0,
};
let total_reward = base_reward * quality_multiplier * participation_multiplier * reputation_multiplier + privacy_bonus;
total_reward as u128
}
pub fn calculate_aggregator_reward(&self, aggregator: &ApprovedAggregator, round: &TrainingRound) -> u128 {
// 1. Base aggregator reward
let base_reward = self.base_reward_rate * round.participants.len() as f64 * 10.0; // 10x participant reward
// 2. Performance multiplier
let performance_multiplier = aggregator.performance_metrics.calculate_performance_score();
// 3. Reputation multiplier
let reputation_multiplier = aggregator.reputation_score * self.reputation_multiplier;
let total_reward = base_reward * performance_multiplier * reputation_multiplier;
total_reward as u128
}
}
Reward Distribution
pub struct RewardDistributor {
pub treasury: Treasury, // Treasury
pub reward_pool: RewardPool, // Reward pool
pub distribution_schedule: DistributionSchedule, // Distribution schedule
}
impl RewardDistributor {
pub fn distribute_rewards(&mut self, round: &TrainingRound) -> Result<RewardDistribution, DistributionError> {
// 1. Calculate total rewards
let participant_rewards = self.calculate_participant_rewards(round)?;
let aggregator_reward = self.calculate_aggregator_reward(round)?;
let treasury_fee = self.calculate_treasury_fee(round)?;
// 2. Validate reward pool
let total_rewards = participant_rewards + aggregator_reward + treasury_fee;
if total_rewards > self.reward_pool.available_balance {
return Err(DistributionError::InsufficientRewards);
}
// 3. Distribute rewards
self.distribute_participant_rewards(&participant_rewards)?;
self.distribute_aggregator_reward(aggregator_reward)?;
self.distribute_treasury_fee(treasury_fee)?;
// 4. Update reward pool
self.reward_pool.available_balance -= total_rewards;
Ok(RewardDistribution {
participant_rewards,
aggregator_reward,
treasury_fee,
total_distributed: total_rewards,
distribution_timestamp: current_timestamp(),
})
}
}
Security Features
Model Security
pub struct ModelSecurity {
pub vulnerability_scanner: VulnerabilityScanner, // Vulnerability scanner
pub code_analyzer: CodeAnalyzer, // Code analyzer
pub privacy_checker: PrivacyChecker, // Privacy checker
pub compliance_validator: ComplianceValidator, // Compliance validator
}
impl ModelSecurity {
pub fn security_scan_model(&self, model: &ModelRegistration) -> Result<SecurityReport, SecurityError> {
// 1. Vulnerability scanning
let vuln_report = self.vulnerability_scanner.scan_model(&model.model_id, &model.model_hash)?;
// 2. Code analysis
let code_report = self.code_analyzer.analyze_code(&model.model_id, &model.model_hash)?;
// 3. Privacy checking
let privacy_report = self.privacy_checker.check_privacy(&model.model_id, &model.model_hash)?;
// 4. Compliance validation
let compliance_report = self.compliance_validator.validate_compliance(&model.model_id, &model.model_hash)?;
// 5. Generate security report
let security_report = SecurityReport {
model_id: model.model_id.clone(),
vulnerability_score: vuln_report.score,
code_quality_score: code_report.score,
privacy_score: privacy_report.score,
compliance_score: compliance_report.score,
overall_score: (vuln_report.score + code_report.score + privacy_report.score + compliance_report.score) / 4.0,
recommendations: self.generate_recommendations(&vuln_report, &code_report, &privacy_report, &compliance_report),
scan_timestamp: current_timestamp(),
};
Ok(security_report)
}
}
Data Privacy
pub struct DataPrivacy {
pub differential_privacy: DifferentialPrivacy, // Differential privacy
pub secure_multiparty_computation: SMPC, // Secure multiparty computation
pub homomorphic_encryption: HomomorphicEncryption, // Homomorphic encryption
pub zero_knowledge_proofs: ZeroKnowledgeProofs, // Zero knowledge proofs
}
impl DataPrivacy {
pub fn apply_privacy_preservation(&self, data: &TrainingData) -> Result<PrivateData, PrivacyError> {
// 1. Apply differential privacy
let noisy_data = self.differential_privacy.add_noise(data)?;
// 2. Apply secure aggregation
let aggregated_data = self.secure_multiparty_computation.aggregate(noisy_data)?;
// 3. Apply homomorphic encryption
let encrypted_data = self.homomorphic_encryption.encrypt(aggregated_data)?;
// 4. Generate zero knowledge proof
let proof = self.zero_knowledge_proofs.generate_proof(&encrypted_data)?;
Ok(PrivateData {
encrypted_data,
proof,
privacy_level: self.calculate_privacy_level(),
timestamp: current_timestamp(),
})
}
}
Performance Metrics
Training Metrics
pub struct TrainingMetrics {
pub rounds_completed: u64, // Rounds completed
pub average_participants: f64, // Average participants
pub average_accuracy: f64, // Average accuracy
pub average_training_time: Duration, // Average training time
pub data_points_processed: u64, // Data points processed
pub model_improvement: f64, // Model improvement
}
pub struct PerformanceMetrics {
pub throughput: f64, // Models per day
pub latency_p50: Duration, // 50th percentile latency
pub latency_p95: Duration, // 95th percentile latency
pub resource_utilization: ResourceUtilization, // Resource utilization
pub error_rate: f64, // Error rate
pub participant_satisfaction: f64, // Participant satisfaction
}
Economic Metrics
pub struct EconomicMetrics {
pub total_rewards_distributed: u128, // Total rewards distributed
pub average_reward_per_participant: u128, // Average reward per participant
pub treasury_revenue: u128, // Treasury revenue
pub model_value_created: u128, // Model value created
pub cost_efficiency: f64, // Cost efficiency
pub roi_metrics: ROIMetrics, // ROI metrics
}
pub struct ROIMetrics {
pub participant_roi: f64, // Participant ROI
pub aggregator_roi: f64, // Aggregator ROI
pub network_roi: f64, // Network ROI
pub investment_payback_period: Duration, // Investment payback period
pub net_present_value: u128, // Net present value
}
This FL governance system provides a comprehensive framework for decentralized AI model training while maintaining privacy, security, and fair reward distribution.