Skip to main content

Security Assumptions

Overview

The Savitri Network security model is built upon a set of fundamental assumptions about the operating environment, participant behavior, and threat landscape. Understanding these assumptions is critical for proper security assessment, risk management, and system design decisions.

Technology Choice Rationale

Why Security Assumptions Documentation

Problem Statement: Complex blockchain systems require explicit security assumptions to ensure proper threat modeling and security design decisions.

Chosen Solution: Comprehensive documentation of security assumptions with validation criteria and impact analysis.

Rationale:

  • Transparency: Clear understanding of security boundaries
  • Risk Assessment: Proper evaluation of assumption violations
  • Design Validation: Ensure security measures align with assumptions
  • Incident Planning: Prepare for assumption violations

Expected Results:

  • Complete inventory of security assumptions
  • Validation criteria for each assumption
  • Impact analysis for assumption violations
  • Monitoring strategies for assumption compliance

Cryptographic Assumptions

Hash Function Security

Primary Assumption:

pub struct HashFunctionAssumptions {
pub collision_resistance: CollisionResistance,
pub preimage_resistance: PreimageResistance,
pub second_preimage_resistance: SecondPreimageResistance,
pub avalanche_effect: AvalancheEffect,
}

impl HashFunctionAssumptions {
pub fn validate_assumptions(&self) -> ValidationResult {
let mut validation = ValidationResult::new();

// 1. Collision resistance validation
validation.add_check("collision_resistance", self.validate_collision_resistance());

// 2. Preimage resistance validation
validation.add_check("preimage_resistance", self.validate_preimage_resistance());

// 3. Second preimage resistance validation
validation.add_check("second_preimage_resistance", self.validate_second_preimage_resistance());

// 4. Avalanche effect validation
validation.add_check("avalanche_effect", self.validate_avalanche_effect());

validation
}

fn validate_collision_resistance(&self) -> CheckResult {
// Assumption: Finding two inputs with same hash is computationally infeasible
// Validation: No known collisions for SHA-256/Keccak256

CheckResult {
assumption: "SHA-256/Keccak256 collision resistance",
current_status: "No known collisions",
validation_method: "Cryptographic analysis and peer review",
confidence_level: 0.95,
last_validated: chrono::Utc::now(),
}
}
}

Impact Analysis:

pub struct HashFunctionImpact {
pub collision_violation: ImpactAnalysis,
pub preimage_violation: ImpactAnalysis,
pub performance_impact: PerformanceImpact,
}

impl HashFunctionImpact {
pub fn analyze_collision_violation_impact(&self) -> ImpactAnalysis {
ImpactAnalysis {
severity: Severity::Critical,
affected_components: vec![
"Block headers",
"Transaction hashes",
"Merkle trees",
"State proofs",
],
attack_vectors: vec![
"Block substitution attacks",
"Transaction malleability",
"State proof forgery",
],
mitigation_strategies: vec![
"Algorithm migration plan",
"Multi-hash verification",
"Post-quantum alternatives",
],
estimated_damage: "Complete blockchain integrity compromise",
}
}
}

Digital Signature Security

Signature Assumptions:

pub struct SignatureAssumptions {
pub key_privacy: KeyPrivacy,
pub unforgeability: Unforgeability,
pub non_repudiation: NonRepudiation,
pub quantum_resistance: QuantumResistance,
}

impl SignatureAssumptions {
pub fn validate_signature_assumptions(&self) -> SignatureValidation {
SignatureValidation {
key_privacy_check: self.validate_key_privacy(),
unforgeability_check: self.validate_unforgeability(),
non_repudiation_check: self.validate_non_repudiation(),
quantum_resistance_check: self.validate_quantum_resistance(),
}
}

fn validate_unforgeability(&self) -> CheckResult {
// Assumption: Private keys cannot be derived from public keys or signatures
// Validation: No known attacks on secp256k1/Ed25519

CheckResult {
assumption: "secp256k1/Ed25519 unforgeability",
current_status: "No known practical attacks",
validation_method: "Mathematical proof and implementation review",
confidence_level: 0.98,
last_validated: chrono::Utc::now(),
}
}
}

Network Assumptions

Peer Connectivity

Network Connectivity Assumptions:

pub struct NetworkAssumptions {
pub connectivity: ConnectivityAssumptions,
pub latency: LatencyAssumptions,
pub bandwidth: BandwidthAssumptions,
pub reliability: ReliabilityAssumptions,
}

impl NetworkAssumptions {
pub fn validate_network_assumptions(&self) -> NetworkValidation {
NetworkValidation {
connectivity_check: self.validate_connectivity(),
latency_check: self.validate_latency(),
bandwidth_check: self.validate_bandwidth(),
reliability_check: self.validate_reliability(),
}
}

fn validate_connectivity(&self) -> CheckResult {
// Assumption: Network remains partially connected during attacks
// Validation: Historical network partition data

CheckResult {
assumption: "Partial network connectivity maintained",
current_status: "Network partitions typically < 50%",
validation_method: "Historical network analysis",
confidence_level: 0.85,
last_validated: chrono::Utc::now(),
}
}
}

Message Propagation

Propagation Assumptions:

pub struct PropagationAssumptions {
pub gossip_protocol: GossipAssumptions,
pub message_delivery: MessageDeliveryAssumptions,
pub censorship_resistance: CensorshipResistanceAssumptions,
}

impl PropagationAssumptions {
pub fn validate_propagation_assumptions(&self) -> PropagationValidation {
PropagationValidation {
gossip_check: self.validate_gossip_protocol(),
delivery_check: self.validate_message_delivery(),
censorship_check: self.validate_censorship_resistance(),
}
}

fn validate_gossip_protocol(&self) -> CheckResult {
// Assumption: Gossip protocol eventually delivers messages to all honest nodes
// Validation: Protocol analysis and simulation

CheckResult {
assumption: "Gossip protocol eventual delivery",
current_status: "Delivery probability > 99.9%",
validation_method: "Protocol simulation and network testing",
confidence_level: 0.90,
last_validated: chrono::Utc::now(),
}
}
}

Consensus Assumptions

Validator Behavior

Validator Assumptions:

pub struct ValidatorAssumptions {
pub honesty_majority: HonestyMajorityAssumption,
pub economic_rationality: EconomicRationalityAssumption,
pub technical_capability: TechnicalCapabilityAssumption,
pub network_participation: NetworkParticipationAssumption,
}

impl ValidatorAssumptions {
pub fn validate_validator_assumptions(&self) -> ValidatorValidation {
ValidatorValidation {
honesty_check: self.validate_honesty_majority(),
rationality_check: self.validate_economic_rationality(),
capability_check: self.validate_technical_capability(),
participation_check: self.validate_network_participation(),
}
}

fn validate_honesty_majority(&self) -> CheckResult {
// Assumption: > 2/3 of validators (by stake) behave honestly
// Validation: Historical validator behavior analysis

CheckResult {
assumption: "> 2/3 validator honesty by stake",
current_status: "Historical honesty rate > 95%",
validation_method: "Stake-weighted behavior analysis",
confidence_level: 0.80,
last_validated: chrono::Utc::now(),
}
}
}

Economic Incentives

Economic Assumptions:

pub struct EconomicAssumptions {
pub reward_adequacy: RewardAdequacyAssumption,
pub punishment_effectiveness: PunishmentEffectivenessAssumption,
pub stake_alignment: StakeAlignmentAssumption,
pub market_stability: MarketStabilityAssumption,
}

impl EconomicAssumptions {
pub fn validate_economic_assumptions(&self) -> EconomicValidation {
EconomicValidation {
reward_check: self.validate_reward_adequacy(),
punishment_check: self.validate_punishment_effectiveness(),
alignment_check: self.validate_stake_alignment(),
stability_check: self.validate_market_stability(),
}
}

fn validate_reward_adequacy(&self) -> CheckResult {
// Assumption: Rewards are sufficient to incentivize honest behavior
// Validation: Economic modeling and stake analysis

CheckResult {
assumption: "Rewards incentivize honest behavior",
current_status: "Honest validator ROI > Dishonest ROI",
validation_method: "Game theory analysis and stake modeling",
confidence_level: 0.75,
last_validated: chrono::Utc::now(),
}
}
}

Hardware Assumptions

Random Number Generation

RNG Assumptions:

pub struct RNGAssumptions {
pub entropy_quality: EntropyQualityAssumption,
pub unpredictability: UnpredictabilityAssumption,
pub uniform_distribution: UniformDistributionAssumption,
}

impl RNGAssumptions {
pub fn validate_rng_assumptions(&self) -> RNGValidation {
RNGValidation {
entropy_check: self.validate_entropy_quality(),
unpredictability_check: self.validate_unpredictability(),
distribution_check: self.validate_uniform_distribution(),
}
}

fn validate_entropy_quality(&self) -> CheckResult {
// Assumption: System RNG provides sufficient entropy for cryptographic operations
// Validation: Entropy source analysis and testing

CheckResult {
assumption: "Sufficient entropy for cryptographic operations",
current_status: "System entropy sources adequate",
validation_method: "Entropy source analysis and statistical testing",
confidence_level: 0.85,
last_validated: chrono::Utc::now(),
}
}
}

Secure Storage

Storage Assumptions:

pub struct StorageAssumptions {
pub data_integrity: DataIntegrityAssumption,
pub access_control: AccessControlAssumption,
pub backup_reliability: BackupReliabilityAssumption,
}

impl StorageAssumptions {
pub fn validate_storage_assumptions(&self) -> StorageValidation {
StorageValidation {
integrity_check: self.validate_data_integrity(),
access_check: self.validate_access_control(),
backup_check: self.validate_backup_reliability(),
}
}

fn validate_data_integrity(&self) -> CheckResult {
// Assumption: Storage systems maintain data integrity over time
// Validation: Data integrity monitoring and testing

CheckResult {
assumption: "Storage systems maintain data integrity",
current_status: "Data corruption rate < 0.001%",
validation_method: "Continuous integrity monitoring",
confidence_level: 0.90,
last_validated: chrono::Utc::now(),
}
}
}

Operational Assumptions

Time Synchronization

Time Assumptions:

pub struct TimeAssumptions {
pub clock_accuracy: ClockAccuracyAssumption,
pub synchronization: SynchronizationAssumption,
pub monotonicity: MonotonicityAssumption,
}

impl TimeAssumptions {
pub fn validate_time_assumptions(&self) -> TimeValidation {
TimeValidation {
accuracy_check: self.validate_clock_accuracy(),
sync_check: self.validate_synchronization(),
monotonicity_check: self.validate_monotonicity(),
}
}

fn validate_clock_accuracy(&self) -> CheckResult {
// Assumption: Node clocks remain within acceptable synchronization bounds
// Validation: NTP monitoring and clock drift analysis

CheckResult {
assumption: "Clock synchronization within acceptable bounds",
current_status: "Clock drift < 100ms typical",
validation_method: "NTP monitoring and drift analysis",
confidence_level: 0.85,
last_validated: chrono::Utc::now(),
}
}
}

Resource Availability

Resource Assumptions:

pub struct ResourceAssumptions {
pub computational_resources: ComputationalResourcesAssumption,
pub network_resources: NetworkResourcesAssumption,
pub storage_resources: StorageResourcesAssumption,
}

impl ResourceAssumptions {
pub fn validate_resource_assumptions(&self) -> ResourceValidation {
ResourceValidation {
computational_check: self.validate_computational_resources(),
network_check: self.validate_network_resources(),
storage_check: self.validate_storage_resources(),
}
}

fn validate_computational_resources(&self) -> CheckResult {
// Assumption: Nodes have sufficient computational resources for operations
// Validation: Resource monitoring and performance analysis

CheckResult {
assumption: "Sufficient computational resources for operations",
current_status: "CPU utilization < 80% typical",
validation_method: "Resource monitoring and performance analysis",
confidence_level: 0.80,
last_validated: chrono::Utc::now(),
}
}
}

Threat Model Assumptions

Attacker Capabilities

Attacker Assumptions:

pub struct AttackerAssumptions {
pub computational_power: ComputationalPowerAssumption,
pub economic_resources: EconomicResourcesAssumption,
pub technical_expertise: TechnicalExpertiseAssumption,
pub network_access: NetworkAccessAssumption,
}

impl AttackerAssumptions {
pub fn validate_attacker_assumptions(&self) -> AttackerValidation {
AttackerValidation {
computational_check: self.validate_computational_power(),
economic_check: self.validate_economic_resources(),
technical_check: self.validate_technical_expertise(),
network_check: self.validate_network_access(),
}
}

fn validate_computational_power(&self) -> CheckResult {
// Assumption: Attackers have limited computational resources
// Validation: Cryptographic difficulty analysis and market assessment

CheckResult {
assumption: "Attackers have limited computational resources",
current_status: "Hash rate < 50% of network typical",
validation_method: "Hash rate monitoring and market analysis",
confidence_level: 0.70,
last_validated: chrono::Utc::now(),
}
}
}

Attack Motivations

Motivation Assumptions:

pub struct MotivationAssumptions {
pub economic_incentives: EconomicIncentivesAssumption,
pub political_motivations: PoliticalMotivationsAssumption,
pub technical_challenges: TechnicalChallengesAssumption,
}

impl MotivationAssumptions {
pub fn validate_motivation_assumptions(&self) -> MotivationValidation {
MotivationValidation {
economic_check: self.validate_economic_incentives(),
political_check: self.validate_political_motivations(),
technical_check: self.validate_technical_challenges(),
}
}

fn validate_economic_incentives(&self) -> CheckResult {
// Assumption: Attackers are primarily motivated by economic gain
// Validation: Historical attack analysis and economic modeling

CheckResult {
assumption: "Attackers primarily motivated by economic gain",
current_status: "Most attacks economically motivated",
validation_method: "Historical attack analysis",
confidence_level: 0.75,
last_validated: chrono::Utc::now(),
}
}
}

Assumption Monitoring

Continuous Validation

Monitoring Framework:

pub struct AssumptionMonitoring {
pub validation_scheduler: ValidationScheduler,
pub alerting_system: AlertingSystem,
pub metrics_collector: MetricsCollector,
}

impl AssumptionMonitoring {
pub async fn monitor_assumptions(&self) -> Result<MonitoringResult, MonitoringError> {
// 1. Schedule periodic validations
let scheduled_validations = self.validation_scheduler.schedule_validations().await?;

// 2. Execute validations
let validation_results = self.execute_validations(&scheduled_validations).await?;

// 3. Collect metrics
let metrics = self.metrics_collector.collect_metrics(&validation_results).await?;

// 4. Generate alerts for violations
let alerts = self.alerting_system.generate_alerts(&validation_results).await?;

Ok(MonitoringResult {
scheduled_validations,
validation_results,
metrics,
alerts,
monitoring_time: chrono::Utc::now(),
})
}
}

Violation Detection

Violation Detection System:

pub struct ViolationDetection {
pub threshold_monitor: ThresholdMonitor,
pub anomaly_detector: AnomalyDetector,
pub impact_assessor: ImpactAssessor,
}

impl ViolationDetection {
pub async fn detect_violations(&self, monitoring_data: &MonitoringData) -> Result<Vec<AssumptionViolation>, DetectionError> {
let mut violations = Vec::new();

// 1. Check threshold violations
let threshold_violations = self.threshold_monitor.check_thresholds(monitoring_data).await?;
violations.extend(threshold_violations);

// 2. Detect anomalies
let anomalies = self.anomaly_detector.detect_anomalies(monitoring_data).await?;
violations.extend(anomalies);

// 3. Assess impact of violations
for violation in &mut violations {
violation.impact_assessment = self.impact_assessor.assess_impact(violation).await?;
}

Ok(violations)
}
}

Assumption Violation Response

Response Strategies

Violation Response Framework:

pub struct ViolationResponse {
pub response_planner: ResponsePlanner,
pub mitigation_executor: MitigationExecutor,
pub recovery_manager: RecoveryManager,
}

impl ViolationResponse {
pub async fn handle_violation(&self, violation: &AssumptionViolation) -> Result<ResponseResult, ResponseError> {
// 1. Plan response strategy
let response_plan = self.response_planner.create_response_plan(violation)?;

// 2. Execute mitigation measures
let mitigation_result = self.mitigation_executor.execute_mitigation(&response_plan).await?;

// 3. Initiate recovery procedures
let recovery_result = self.recovery_manager.initiate_recovery(violation, &mitigation_result).await?;

Ok(ResponseResult {
response_plan,
mitigation_result,
recovery_result,
response_time: chrono::Utc::now(),
})
}
}

Migration Strategies

Assumption Migration:

pub struct AssumptionMigration {
pub migration_planner: MigrationPlanner,
pub compatibility_manager: CompatibilityManager,
pub rollback_manager: RollbackManager,
}

impl AssumptionMigration {
pub async fn migrate_assumption(&self, old_assumption: &SecurityAssumption, new_assumption: &SecurityAssumption) -> Result<MigrationResult, MigrationError> {
// 1. Plan migration strategy
let migration_plan = self.migration_planner.create_migration_plan(old_assumption, new_assumption)?;

// 2. Ensure compatibility
let compatibility_check = self.compatibility_manager.check_compatibility(old_assumption, new_assumption)?;

// 3. Execute migration
let migration_result = self.execute_migration(&migration_plan).await?;

// 4. Prepare rollback if needed
let rollback_plan = self.rollback_manager.create_rollback_plan(old_assumption, new_assumption)?;

Ok(MigrationResult {
migration_plan,
compatibility_check,
migration_result,
rollback_plan,
migration_time: chrono::Utc::now(),
})
}
}

This comprehensive security assumptions documentation provides a systematic approach to understanding, validating, and managing the fundamental assumptions that underpin the Savitri Network security model.