Skip to main content

Threat Model

Overview

The Savitri Network threat model identifies potential security threats, attack vectors, and mitigation strategies for the blockchain network. This comprehensive analysis covers all layers of the network architecture, from consensus mechanisms to application-level interactions, providing a systematic approach to security assessment and risk management.

Technology Choice Rationale

Why Threat Model Documentation

Problem Statement: Complex blockchain systems require systematic identification of security threats to ensure comprehensive protection against attacks.

Chosen Solution: Structured threat modeling with STRIDE methodology, threat categorization, and systematic mitigation strategies.

Rationale:

  • Systematic Analysis: Comprehensive threat identification across all layers
  • Risk Prioritization: Focus resources on highest-risk threats
  • Mitigation Planning: Clear strategies for addressing identified threats
  • Security Assurance: Demonstrated security due diligence

Expected Results:

  • Complete threat inventory across all network components
  • Prioritized risk assessment with severity ratings
  • Comprehensive mitigation strategies for each threat
  • Security validation framework for ongoing assessment

Threat Modeling Methodology

STRIDE Framework

Threat Categories:

pub enum ThreatCategory {
Spoofing, // Identity impersonation
Tampering, // Data integrity compromise
Repudiation, // Denial of actions
InformationDisclosure, // Unauthorized data access
DenialOfService, // Service disruption
ElevationOfPrivilege, // Unauthorized privilege escalation
}

impl ThreatCategory {
pub fn get_description(&self) -> &'static str {
match self {
ThreatCategory::Spoofing => "Identity impersonation and authentication bypass",
ThreatCategory::Tampering => "Unauthorized modification of data or code",
ThreatCategory::Repudiation => "Denial of performed actions or transactions",
ThreatCategory::InformationDisclosure => "Unauthorized access to sensitive information",
ThreatCategory::DenialOfService => "Disruption of network services or availability",
ThreatCategory::ElevationOfPrivilege => "Unauthorized escalation of access privileges",
}
}
}

Risk Assessment Framework

Risk Scoring:

pub struct ThreatRisk {
pub category: ThreatCategory,
pub likelihood: Likelihood, // Attack probability
pub impact: Impact, // Damage severity
pub risk_score: f64, // Overall risk score
pub affected_components: Vec<Component>, // Affected system components
}

#[derive(Debug, Clone)]
pub enum Likelihood {
VeryLow, // < 1% chance
Low, // 1-10% chance
Medium, // 10-30% chance
High, // 30-60% chance
VeryHigh, // > 60% chance
}

#[derive(Debug, Clone)]
pub enum Impact {
VeryLow, // Minimal damage
Low, // Minor damage
Medium, // Moderate damage
High, // Significant damage
VeryHigh, // Critical damage
}

impl ThreatRisk {
pub fn calculate_risk_score(&self) -> f64 {
let likelihood_score = match self.likelihood {
Likelihood::VeryLow => 0.1,
Likelihood::Low => 0.3,
Likelihood::Medium => 0.5,
Likelihood::High => 0.7,
Likelihood::VeryHigh => 0.9,
};

let impact_score = match self.impact {
Impact::VeryLow => 0.1,
Impact::Low => 0.3,
Impact::Medium => 0.5,
Impact::High => 0.7,
Impact::VeryHigh => 0.9,
};

likelihood_score * impact_score
}
}

Network Layer Threats

Eclipse Attacks

Threat Description:

pub struct EclipseAttack {
pub attacker: NodeId,
pub target_nodes: Vec<NodeId>,
pub isolation_method: IsolationMethod,
pub attack_duration: Duration,
}

#[derive(Debug, Clone)]
pub enum IsolationMethod {
PeerIsolation, // Isolate from honest peers
NetworkPartition, // Create network partition
BandwidthExhaustion, // Exhaust bandwidth resources
ConnectionFlooding, // Flood with malicious connections
}

impl EclipseAttack {
pub fn analyze_attack_vectors(&self) -> Vec<AttackVector> {
vec![
AttackVector {
description: "Isolate target from honest network peers".to_string(),
likelihood: Likelihood::Medium,
impact: Impact::High,
mitigation: "Peer diversity and connection monitoring".to_string(),
},
AttackVector {
description: "Control all peer connections to target node".to_string(),
likelihood: Likelihood::Low,
impact: Impact::VeryHigh,
mitigation: "Random peer selection and connection limits".to_string(),
},
]
}
}

Mitigation Strategies:

pub struct EclipseMitigation {
pub peer_diversity: PeerDiversityManager,
pub connection_monitoring: ConnectionMonitor,
pub random_peer_selection: RandomPeerSelector,
pub network_health_checker: NetworkHealthChecker,
}

impl EclipseMitigation {
pub fn implement_mitigations(&self) -> MitigationResult {
// 1. Ensure peer diversity across geographic regions
let diversity_score = self.peer_diversity.calculate_diversity_score();

// 2. Monitor connection patterns for anomalies
let connection_health = self.connection_monitor.check_connection_health();

// 3. Use random peer selection to prevent targeting
let randomization_score = self.random_peer_selection.get_randomization_score();

// 4. Check overall network health
let network_health = self.network_health_checker.assess_network_health();

MitigationResult {
effectiveness: (diversity_score + connection_health + randomization_score + network_health) / 4.0,
implemented_mitigations: vec![
"Peer diversity enforcement".to_string(),
"Connection monitoring".to_string(),
"Random peer selection".to_string(),
"Network health checking".to_string(),
],
}
}
}

Sybil Attacks

Threat Analysis:

pub struct SybilAttack {
pub fake_nodes: Vec<NodeId>,
pub attack_objective: AttackObjective,
pub resource_requirements: ResourceRequirements,
}

#[derive(Debug, Clone)]
pub enum AttackObjective {
ConsensusDisruption, // Disrupt consensus process
ReputationInflation, // Inflate fake node reputation
NetworkPartition, // Create network partition
VoteManipulation, // Manipulate voting processes
}

impl SybilAttack {
pub fn assess_attack_feasibility(&self) -> FeasibilityAssessment {
let economic_cost = self.calculate_economic_cost();
let technical_complexity = self.assess_technical_complexity();
let detection_risk = self.assess_detection_risk();

FeasibilityAssessment {
economic_cost,
technical_complexity,
detection_risk,
overall_feasibility: self.calculate_overall_feasibility(),
}
}

fn calculate_economic_cost(&self) -> EconomicCost {
// Cost analysis for creating fake nodes
let node_creation_cost = self.fake_nodes.len() as f64 * NODE_CREATION_COST;
let maintenance_cost = self.fake_nodes.len() as f64 * MAINTENANCE_COST_PER_DAY;
let network_cost = self.calculate_network_bandwidth_cost();

EconomicCost {
creation_cost: node_creation_cost,
daily_maintenance: maintenance_cost,
network_bandwidth: network_cost,
total_cost: node_creation_cost + maintenance_cost + network_cost,
}
}
}

Sybil Resistance Mechanisms:

pub struct SybilResistance {
pub identity_verification: IdentityVerifier,
pub resource_testing: ResourceTester,
pub reputation_system: ReputationSystem,
pub stake_requirements: StakeRequirementManager,
}

impl SybilResistance {
pub fn verify_node_identity(&self, node: &NodeId) -> Result<IdentityVerification, SybilError> {
// 1. Verify cryptographic identity
let crypto_verification = self.identity_verification.verify_cryptographic_identity(node)?;

// 2. Test resource commitment
let resource_test = self.resource_testing.test_resource_commitment(node)?;

// 3. Check reputation history
let reputation_check = self.reputation_system.check_reputation_history(node)?;

// 4. Verify stake requirements
let stake_verification = self.stake_requirements.verify_stake_requirements(node)?;

if crypto_verification.is_valid &&
resource_test.sufficient_resources &&
reputation_check.good_reputation &&
stake_verification.meets_requirements {
Ok(IdentityVerification {
is_valid: true,
verification_score: self.calculate_verification_score(&crypto_verification, &resource_test, &reputation_check, &stake_verification),
verification_time: Instant::now(),
})
} else {
Err(SybilError::IdentityVerificationFailed)
}
}
}

Consensus Layer Threats

BFT Consensus Attacks

Consensus Threat Analysis:

pub struct ConsensusThreat {
pub attack_type: ConsensusAttackType,
pub required_compromise: RequiredCompromise,
pub attack_impact: ConsensusImpact,
}

#[derive(Debug, Clone)]
pub enum ConsensusAttackType {
ByzantineBehavior, // Malicious voting behavior
Equivocation, // Double voting
SelfishMining, // Selfish mining strategies
BlockWithholding, // Withholding valid blocks
VoteManipulation, // Manipulating vote counts
}

impl ConsensusThreat {
pub fn analyze_attack_requirements(&self) -> AttackRequirements {
match self.attack_type {
ConsensusAttackType::ByzantineBehavior => {
AttackRequirements {
compromised_validators: (1.0 / 3.0) + 0.01, // > 1/3 of validators
economic_cost: self.calculate_byzantine_cost(),
technical_complexity: TechnicalComplexity::High,
detection_risk: DetectionRisk::Medium,
}
},
ConsensusAttackType::Equivocation => {
AttackRequirements {
compromised_validators: 1, // Single validator
economic_cost: BOND_AMOUNT * 0.5, // 50% slash risk
technical_complexity: TechnicalComplexity::Medium,
detection_risk: DetectionRisk::High,
}
},
// ... other attack types
}
}
}

Consensus Security Measures:

pub struct ConsensusSecurity {
pub slashing_conditions: SlashingConditions,
pub evidence_collection: EvidenceCollector,
pub validator_monitoring: ValidatorMonitor,
pub consensus_rules: ConsensusRules,
}

impl ConsensusSecurity {
pub fn detect_malicious_behavior(&self, validator: &ValidatorId) -> Result<MaliciousBehavior, SecurityError> {
// 1. Check for equivocation
let equivocation_check = self.slashing_conditions.check_equivocation(validator)?;

// 2. Verify vote consistency
let vote_consistency = self.validator_monitoring.check_vote_consistency(validator)?;

// 3. Analyze participation patterns
let participation_analysis = self.validator_monitoring.analyze_participation(validator)?;

// 4. Check for block withholding
let withholding_check = self.consensus_rules.check_block_withholding(validator)?;

let malicious_behavior = MaliciousBehavior {
equivocation_detected: equivocation_check.detected,
vote_inconsistency: vote_consistency.inconsistent,
low_participation: participation_analysis.participation_rate < MIN_PARTICIPATION_RATE,
block_withholding: withholding_check.withholding_detected,
overall_risk_score: self.calculate_risk_score(&equivocation_check, &vote_consistency, &participation_analysis, &withholding_check),
};

Ok(malicious_behavior)
}
}

Validator Bond Manipulation

Bond Security Analysis:

pub struct BondSecurity {
pub bond_manager: BondManager,
pub slashing_manager: SlashingManager,
pub bond_tracking: BondTracker,
}

impl BondSecurity {
pub fn analyze_bond_security(&self) -> BondSecurityAnalysis {
// 1. Analyze bond distribution
let bond_distribution = self.bond_manager.analyze_bond_distribution();

// 2. Check for concentration risks
let concentration_risk = self.calculate_concentration_risk(&bond_distribution);

// 3. Verify slashing effectiveness
let slashing_effectiveness = self.slashing_manager.analyze_slashing_effectiveness();

// 4. Assess bond liquidity
let liquidity_analysis = self.bond_tracking.assess_bond_liquidity();

BondSecurityAnalysis {
distribution_analysis: bond_distribution,
concentration_risk,
slashing_effectiveness,
liquidity_analysis,
overall_security_score: self.calculate_overall_security_score(&bond_distribution, concentration_risk, slashing_effectiveness, &liquidity_analysis),
}
}

fn calculate_concentration_risk(&self, distribution: &BondDistribution) -> ConcentrationRisk {
let top_holders_percentage = distribution.top_holders_percentage();
let herfindahl_index = distribution.calculate_herfindahl_index();

ConcentrationRisk {
top_holders_risk: if top_holders_percentage > 0.5 { RiskLevel::High } else { RiskLevel::Low },
concentration_index: herfindahl_index,
diversification_score: 1.0 - herfindahl_index,
}
}
}

Application Layer Threats

Smart Contract Vulnerabilities

Contract Security Analysis:

pub struct ContractSecurity {
pub vulnerability_scanner: VulnerabilityScanner,
pub static_analyzer: StaticAnalyzer,
pub runtime_monitor: RuntimeMonitor,
}

impl ContractSecurity {
pub fn analyze_contract_security(&self, contract: &SmartContract) -> ContractSecurityAnalysis {
// 1. Static analysis for common vulnerabilities
let static_analysis = self.static_analyzer.analyze_contract(contract)?;

// 2. Runtime behavior monitoring
let runtime_analysis = self.runtime_monitor.analyze_runtime_behavior(contract)?;

// 3. Vulnerability scanning
let vulnerability_scan = self.vulnerability_scanner.scan_contract(contract)?;

// 4. Gas optimization analysis
let gas_analysis = self.analyze_gas_usage(contract)?;

ContractSecurityAnalysis {
static_analysis,
runtime_analysis,
vulnerability_scan,
gas_analysis,
overall_security_score: self.calculate_contract_security_score(&static_analysis, &runtime_analysis, &vulnerability_scan, &gas_analysis),
}
}
}

Common Vulnerability Patterns:

pub struct VulnerabilityPatterns {
pub reentrancy_detector: ReentrancyDetector,
pub integer_overflow_detector: IntegerOverflowDetector,
pub access_control_analyzer: AccessControlAnalyzer,
pub gas_limit_analyzer: GasLimitAnalyzer,
}

impl VulnerabilityPatterns {
pub fn detect_vulnerabilities(&self, contract: &SmartContract) -> Vec<Vulnerability> {
let mut vulnerabilities = Vec::new();

// 1. Check for reentrancy vulnerabilities
if let Some(reentrancy) = self.reentrancy_detector.detect_reentrancy(contract) {
vulnerabilities.push(Vulnerability::Reentrancy(reentrancy));
}

// 2. Check for integer overflow/underflow
if let Some(overflow) = self.integer_overflow_detector.detect_overflow(contract) {
vulnerabilities.push(Vulnerability::IntegerOverflow(overflow));
}

// 3. Check access control issues
if let Some(access_control) = self.access_control_analyzer.analyze_access_control(contract) {
vulnerabilities.push(Vulnerability::AccessControl(access_control));
}

// 4. Check gas limit issues
if let Some(gas_issue) = self.gas_limit_analyzer.analyze_gas_limits(contract) {
vulnerabilities.push(Vulnerability::GasLimit(gas_issue));
}

vulnerabilities
}
}

Transaction Replay Attacks

Replay Attack Analysis:

pub struct ReplayAttackSecurity {
pub nonce_manager: NonceManager,
pub transaction_tracker: TransactionTracker,
pub signature_verifier: SignatureVerifier,
}

impl ReplayAttackSecurity {
pub fn prevent_replay_attack(&self, transaction: &SignedTransaction) -> Result<ReplayPrevention, SecurityError> {
// 1. Check nonce validity
let nonce_check = self.nonce_manager.validate_nonce(&transaction.signer, transaction.nonce)?;

// 2. Check if transaction was already executed
let execution_check = self.transaction_tracker.check_execution_status(&transaction.hash)?;

// 3. Verify signature freshness
let signature_check = self.signature_verifier.verify_signature_freshness(&transaction)?;

// 4. Check for double-spending patterns
let double_spend_check = self.check_double_spending_patterns(transaction)?;

if nonce_check.is_valid &&
!execution_check.was_executed &&
signature_check.is_fresh &&
!double_spend_check.is_double_spend {
Ok(ReplayPrevention {
is_safe: true,
prevention_score: self.calculate_prevention_score(&nonce_check, &execution_check, &signature_check, &double_spend_check),
prevention_time: Instant::now(),
})
} else {
Err(SecurityError::ReplayAttackDetected)
}
}
}

Cryptographic Threats

Cryptographic Algorithm Attacks

Crypto Security Analysis:

pub struct CryptoSecurity {
pub algorithm_analyzer: AlgorithmAnalyzer,
pub key_strength_checker: KeyStrengthChecker,
pub randomness_validator: RandomnessValidator,
}

impl CryptoSecurity {
pub fn analyze_crypto_security(&self, crypto_config: &CryptoConfig) -> CryptoSecurityAnalysis {
// 1. Analyze algorithm strength
let algorithm_analysis = self.algorithm_analyzer.analyze_algorithms(crypto_config)?;

// 2. Check key strength
let key_analysis = self.key_strength_checker.check_key_strength(crypto_config)?;

// 3. Validate randomness sources
let randomness_analysis = self.randomness_validator.validate_randomness(crypto_config)?;

// 4. Check for quantum vulnerability
let quantum_analysis = self.analyze_quantum_vulnerability(crypto_config)?;

CryptoSecurityAnalysis {
algorithm_analysis,
key_analysis,
randomness_analysis,
quantum_analysis,
overall_crypto_score: self.calculate_crypto_security_score(&algorithm_analysis, &key_analysis, &randomness_analysis, &quantum_analysis),
}
}
}

Quantum Computing Threats

Quantum Threat Assessment:

pub struct QuantumThreat {
pub quantum_algorithms: Vec<QuantumAlgorithm>,
pub vulnerable_schemes: Vec<CryptoScheme>,
pub migration_timeline: MigrationTimeline,
}

impl QuantumThreat {
pub fn assess_quantum_vulnerability(&self) -> QuantumVulnerabilityAssessment {
// 1. Identify vulnerable cryptographic schemes
let vulnerable_schemes = self.identify_vulnerable_schemes();

// 2. Assess quantum algorithm capabilities
let quantum_capabilities = self.assess_quantum_capabilities();

// 3. Estimate time to vulnerability
let time_to_vulnerability = self.estimate_time_to_vulnerability(&quantum_capabilities);

// 4. Plan migration strategy
let migration_strategy = self.plan_migration_strategy(time_to_vulnerability);

QuantumVulnerabilityAssessment {
vulnerable_schemes,
quantum_capabilities,
time_to_vulnerability,
migration_strategy,
urgency_level: self.calculate_urgency_level(time_to_vulnerability),
}
}
}

Economic Threats

Economic Attack Vectors

Economic Security Analysis:

pub struct EconomicSecurity {
pub tokenomics_analyzer: TokenomicsAnalyzer,
pub market_manipulation_detector: MarketManipulationDetector,
pub incentive_analyzer: IncentiveAnalyzer,
}

impl EconomicSecurity {
pub fn analyze_economic_security(&self, economic_state: &EconomicState) -> EconomicSecurityAnalysis {
// 1. Analyze tokenomics for vulnerabilities
let tokenomics_analysis = self.tokenomics_analyzer.analyze_tokenomics(economic_state)?;

// 2. Detect market manipulation patterns
let manipulation_analysis = self.market_manipulation_detector.detect_manipulation(economic_state)?;

// 3. Analyze incentive alignment
let incentive_analysis = self.incentive_analyzer.analyze_incentives(economic_state)?;

// 4. Assess economic stability
let stability_analysis = self.assess_economic_stability(economic_state)?;

EconomicSecurityAnalysis {
tokenomics_analysis,
manipulation_analysis,
incentive_analysis,
stability_analysis,
overall_economic_score: self.calculate_economic_security_score(&tokenomics_analysis, &manipulation_analysis, &incentive_analysis, &stability_analysis),
}
}
}

51% Attacks

Majority Attack Analysis:

pub struct MajorityAttack {
pub attack_cost: AttackCost,
pub attack_feasibility: AttackFeasibility,
pub attack_impact: AttackImpact,
}

impl MajorityAttack {
pub fn analyze_majority_attack_risk(&self, network_state: &NetworkState) -> MajorityAttackRisk {
// 1. Calculate cost of acquiring 51% stake
let acquisition_cost = self.calculate_stake_acquisition_cost(network_state);

// 2. Assess technical feasibility
let technical_feasibility = self.assess_technical_feasibility(network_state);

// 3. Analyze potential impact
let impact_analysis = self.analyze_attack_impact(network_state);

// 4. Estimate detection probability
let detection_probability = self.estimate_detection_probability(network_state);

MajorityAttackRisk {
acquisition_cost,
technical_feasibility,
impact_analysis,
detection_probability,
overall_risk_score: self.calculate_overall_risk_score(acquisition_cost, technical_feasibility, impact_analysis, detection_probability),
}
}
}

Mitigation Strategies

Defense in Depth

Layered Security Architecture:

pub struct DefenseInDepth {
pub network_defenses: NetworkDefenses,
pub consensus_defenses: ConsensusDefenses,
pub application_defenses: ApplicationDefenses,
pub infrastructure_defenses: InfrastructureDefenses,
}

impl DefenseInDepth {
pub fn implement_defense_strategy(&self) -> DefenseStrategy {
DefenseStrategy {
network_layer: self.network_defenses.get_network_protections(),
consensus_layer: self.consensus_defenses.get_consensus_protections(),
application_layer: self.application_defenses.get_application_protections(),
infrastructure_layer: self.infrastructure_defenses.get_infrastructure_protections(),
cross_layer_coordinations: self.get_cross_layer_coordinations(),
}
}
}

Incident Response

Security Incident Management:

pub struct IncidentResponse {
pub incident_detector: IncidentDetector,
pub response_coordinator: ResponseCoordinator,
pub recovery_manager: RecoveryManager,
}

impl IncidentResponse {
pub async fn handle_security_incident(&self, incident: SecurityIncident) -> Result<IncidentResolution, ResponseError> {
// 1. Detect and classify incident
let incident_classification = self.incident_detector.classify_incident(&incident)?;

// 2. Coordinate response team
let response_team = self.response_coordinator.assemble_response_team(&incident_classification)?;

// 3. Implement containment measures
let containment_result = self.implement_containment(&incident, &response_team).await?;

// 4. Initiate recovery procedures
let recovery_result = self.recovery_manager.initiate_recovery(&incident, &containment_result).await?;

Ok(IncidentResolution {
incident_classification,
response_team,
containment_result,
recovery_result,
resolution_time: Instant::now(),
})
}
}

Threat Monitoring

Real-time Threat Detection

Threat Monitoring System:

pub struct ThreatMonitoring {
pub anomaly_detector: AnomalyDetector,
pub threat_intelligence: ThreatIntelligence,
pub alerting_system: AlertingSystem,
}

impl ThreatMonitoring {
pub async fn monitor_threats(&self) -> Result<ThreatMonitoringResult, MonitoringError> {
// 1. Collect network data
let network_data = self.collect_network_data().await?;

// 2. Detect anomalies
let anomalies = self.anomaly_detector.detect_anomalies(&network_data)?;

// 3. Correlate with threat intelligence
let threat_correlations = self.threat_intelligence.correlate_threats(&anomalies)?;

// 4. Generate alerts for critical threats
let alerts = self.alerting_system.generate_alerts(&threat_correlations)?;

Ok(ThreatMonitoringResult {
network_data,
anomalies,
threat_correlations,
alerts,
monitoring_time: Instant::now(),
})
}
}

This comprehensive threat model provides systematic analysis of security threats across all layers of the Savitri Network, enabling proactive security measures and incident response capabilities.