Transaction Prevalidation Architecture
Prevalidation Overview
Savitri Network implements a comprehensive transaction prevalidation system that performs early validation, security checks, and economic viability assessment before transactions enter the mempool. This multi-layered validation approach prevents spam, attacks, and invalid transactions from consuming network resources.
Technology Choice Rationale
Why Multi-Layer Prevalidation
Problem Statement: Traditional blockchains perform most validation during block execution, leading to wasted computational resources on invalid transactions and potential DoS attacks through spam transactions.
Chosen Solution: Multi-layer prevalidation with semantic analysis, economic validation, and security screening before mempool admission.
Rationale:
- Resource Efficiency: Reject invalid transactions early, saving computational resources
- Security: Prevent various attack vectors before they impact the network
- Economic Protection: Ensure transactions are economically viable before processing
- Network Health: Maintain mempool health by filtering out problematic transactions
Expected Results:
- 80-90% reduction in invalid transaction processing
- Improved network resilience against spam and DoS attacks
- Better resource utilization and lower operational costs
- Enhanced security posture through early threat detection
Why Semantic Analysis of Call Data
Problem Statement: Simple syntactic validation fails to detect sophisticated attacks, malicious contract interactions, or economically irrational transactions that could harm the network.
Chosen Solution: Deep semantic analysis of transaction call data with pattern recognition, behavioral analysis, and economic modeling.
Rationale:
- Attack Detection: Identify malicious patterns and attack vectors
- Economic Validation: Ensure transactions make economic sense
- Behavioral Analysis: Detect anomalous transaction patterns
- Contract Security: Validate contract interaction safety
Expected Results:
- Early detection of sophisticated attacks and exploits
- Prevention of economically irrational transactions
- Enhanced smart contract security
- Reduced attack surface through behavioral analysis
Prevalidation Architecture
Core Components
pub struct PrevalidationEngine {
pub syntactic_validator: SyntacticValidator, // Basic syntax validation
pub semantic_analyzer: SemanticAnalyzer, // Deep semantic analysis
pub economic_validator: EconomicValidator, // Economic viability
pub security_checker: SecurityChecker, // Security screening
pub reputation_system: ReputationSystem, // Sender reputation
pub metrics: PrevalidationMetrics, // Performance metrics
pub config: PrevalidationConfig, // Configuration
}
pub struct PrevalidationResult {
pub is_valid: bool, // Overall validity
pub rejection_reason: Option<RejectionReason>, // Rejection reason
pub risk_score: f64, // Risk assessment
pub priority_score: f64, // Priority score
pub gas_estimate: u64, // Gas estimate
pub economic_score: f64, // Economic viability score
pub security_flags: Vec<SecurityFlag>, // Security concerns
}
Syntactic Validation Layer
pub struct SyntacticValidator {
pub max_transaction_size: usize, // Maximum transaction size
pub max_call_data_size: usize, // Maximum call data size
pub signature_validator: SignatureValidator, // Signature validation
pub format_checker: FormatChecker, // Format checking
}
impl SyntacticValidator {
pub fn validate_syntax(&self, tx: &SignedTx) -> Result<SyntacticResult, SyntacticError> {
// 1. Basic structure validation
self.validate_transaction_structure(tx)?;
// 2. Signature validation
self.validate_signature(tx)?;
// 3. Call data format validation
self.validate_call_data_format(&tx.call_data)?;
// 4. Size constraints
self.validate_size_constraints(tx)?;
// 5. Field value ranges
self.validate_field_ranges(tx)?;
Ok(SyntacticResult {
is_valid: true,
gas_estimate: self.estimate_gas_usage(tx),
format_flags: self.get_format_flags(tx),
})
}
fn validate_signature(&self, tx: &SignedTx) -> Result<(), SyntacticError> {
// Verify Ed25519 signature
let message = self.serialize_transaction_for_signing(tx)?;
if !verify_signature(&tx.signature, &tx.signer, &message) {
return Err(SyntacticError::InvalidSignature);
}
// Check signature format
if !self.is_valid_signature_format(&tx.signature) {
return Err(SyntacticError::InvalidSignatureFormat);
}
Ok(())
}
fn validate_call_data_format(&self, call_data: &[u8]) -> Result<(), SyntacticError> {
if call_data.len() > self.max_call_data_size {
return Err(SyntacticError::CallDataTooLarge);
}
// Check for valid function selector (first 4 bytes)
if call_data.len() >= 4 {
let selector = u32::from_le_bytes([
call_data[0], call_data[1], call_data[2], call_data[3]
]);
if !self.is_valid_function_selector(selector) {
return Err(SyntacticError::InvalidFunctionSelector);
}
}
// Validate ABI encoding if present
if call_data.len() > 4 {
self.validate_abi_encoding(&call_data[4..])?;
}
Ok(())
}
}
Semantic Analysis Layer
pub struct SemanticAnalyzer {
pub pattern_detector: PatternDetector, // Pattern detection
pub behavior_analyzer: BehaviorAnalyzer, // Behavioral analysis
pub contract_analyzer: ContractAnalyzer, // Contract analysis
pub economic_modeler: EconomicModeler, // Economic modeling
}
impl SemanticAnalyzer {
pub fn analyze_semantics(&self, tx: &SignedTx, state: &StateDB) -> Result<SemanticResult, SemanticError> {
// 1. Pattern analysis
let pattern_result = self.pattern_detector.analyze_patterns(tx)?;
// 2. Behavioral analysis
let behavior_result = self.behavior_analyzer.analyze_behavior(tx, state)?;
// 3. Contract interaction analysis
let contract_result = self.contract_analyzer.analyze_contract_interaction(tx, state)?;
// 4. Economic modeling
let economic_result = self.economic_modeler.model_economic_impact(tx, state)?;
// 5. Combine results
let combined_result = self.combine_analysis_results(
pattern_result, behavior_result, contract_result, economic_result
);
Ok(combined_result)
}
fn analyze_attack_patterns(&self, tx: &SignedTx) -> Vec<AttackPattern> {
let mut patterns = Vec::new();
// Check for reentrancy patterns
if self.detect_reentrancy_pattern(tx) {
patterns.push(AttackPattern::Reentrancy);
}
// Check for overflow/underflow patterns
if self.detect_arithmetic_overflow_pattern(tx) {
patterns.push(AttackPattern::ArithmeticOverflow);
}
// Check for front-running patterns
if self.detect_front_running_pattern(tx) {
patterns.push(AttackPattern::FrontRunning);
}
// Check for sandwich attack patterns
if self.detect_sandwich_attack_pattern(tx) {
patterns.push(AttackPattern::SandwichAttack);
}
// Check for flash loan attack patterns
if self.detect_flash_loan_attack_pattern(tx) {
patterns.push(AttackPattern::FlashLoanAttack);
}
patterns
}
fn detect_reentrancy_pattern(&self, tx: &SignedTx) -> bool {
// Analyze call data for reentrancy indicators
let call_data = &tx.call_data;
// Check for external calls before state changes
if call_data.len() >= 4 {
let selector = u32::from_le_bytes([
call_data[0], call_data[1], call_data[2], call_data[3]
]);
// Known reentrancy-vulnerable patterns
match selector {
0x095ea7b3 | // approve
0xa9059cbb | // transfer
0x23b872dd // transferFrom
=> {
// Check if call data contains callback patterns
self.contains_callback_pattern(call_data)
},
_ => false,
}
} else {
false
}
}
}
Economic Validation Layer
pub struct EconomicValidator {
pub gas_pricer: GasPricer, // Gas pricing
pub fee_calculator: FeeCalculator, // Fee calculation
pub market_analyzer: MarketAnalyzer, // Market analysis
pub profitability_checker: ProfitabilityChecker, // Profitability analysis
}
impl EconomicValidator {
pub fn validate_economics(&self, tx: &SignedTx, state: &StateDB) -> Result<EconomicResult, EconomicError> {
// 1. Gas price validation
let gas_price_result = self.validate_gas_price(tx, state)?;
// 2. Fee sufficiency
let fee_result = self.validate_fee_sufficiency(tx, state)?;
// 3. Market impact analysis
let market_result = self.market_analyzer.analyze_market_impact(tx, state)?;
// 4. Profitability analysis
let profit_result = self.profitability_checker.analyze_profitability(tx, state)?;
// 5. Economic rationality
let rationality_result = self.validate_economic_rationality(tx, state)?;
Ok(EconomicResult {
is_economically_viable: gas_result.is_valid && fee_result.is_valid && rationality_result.is_valid,
gas_price: gas_price_result.gas_price,
required_fee: fee_result.required_fee,
market_impact: market_result.impact_score,
profitability: profit_result.profitability_score,
rationality_score: rationality_result.rationality_score,
economic_flags: self.combine_economic_flags(&[gas_result, fee_result, rationality_result]),
})
}
fn validate_economic_rationality(&self, tx: &SignedTx, state: &StateDB) -> Result<RationalityResult, EconomicError> {
// Check for economically irrational behavior
let sender_balance = state.get_account_balance(&tx.signer)?;
// 1. Fee-to-value ratio analysis
let fee_to_value_ratio = tx.fee as f64 / self.extract_transaction_value(tx)?;
if fee_to_value_ratio > 0.5 {
return Ok(RationalityResult {
is_rational: false,
reason: RationalityIssue::ExcessiveFeeRatio,
score: 0.2,
});
}
// 2. Balance sufficiency with safety margin
let total_cost = tx.fee + self.estimate_execution_cost(tx)?;
let safety_margin = total_cost / 10; // 10% safety margin
if sender_balance < total_cost + safety_margin {
return Ok(RationalityResult {
is_rational: false,
reason: RationalityIssue::InsufficientBalanceMargin,
score: 0.1,
});
}
// 3. Gas limit rationality
let estimated_gas = self.estimate_gas_usage(tx)?;
if tx.gas_limit > estimated_gas * 3 {
return Ok(RationalityResult {
is_rational: false,
reason: RationalityIssue::ExcessiveGasLimit,
score: 0.3,
});
}
Ok(RationalityResult {
is_rational: true,
reason: RationalityIssue::None,
score: 1.0,
})
}
}
Security Screening Layer
pub struct SecurityChecker {
pub attack_detector: AttackDetector, // Attack detection
pub aml_checker: AmlChecker, // Anti-money laundering
pub sanction_checker: SanctionChecker, // Sanction screening
pub reputation_checker: ReputationChecker, // Reputation checking
}
impl SecurityChecker {
pub fn perform_security_check(&self, tx: &SignedTx, state: &StateDB) -> Result<SecurityResult, SecurityError> {
// 1. Attack detection
let attack_result = self.attack_detector.detect_attacks(tx, state)?;
// 2. AML screening
let aml_result = self.aml_checker.screen_transaction(tx, state)?;
// 3. Sanction checking
let sanction_result = self.sanction_checker.check_sanctions(tx)?;
// 4. Reputation checking
let reputation_result = self.reputation_checker.check_reputation(&tx.signer, state)?;
// 5. Combine security assessment
let risk_score = self.calculate_overall_risk_score(&[
&attack_result, &aml_result, &sanction_result, &reputation_result
]);
Ok(SecurityResult {
is_secure: risk_score < 0.7, // 70% risk threshold
risk_score,
attack_flags: attack_result.detected_attacks,
aml_flags: aml_result.suspicious_patterns,
sanction_flags: sanction_result.matches,
reputation_score: reputation_result.score,
security_recommendations: self.generate_security_recommendations(&risk_score),
})
}
fn calculate_overall_risk_score(&self, results: &[&SecurityCheckResult]) -> f64 {
let mut total_score = 0.0;
let mut weight_sum = 0.0;
// Weight different security checks
let weights = [0.4, 0.3, 0.2, 0.1]; // Attack, AML, Sanction, Reputation
for (result, weight) in results.iter().zip(weights.iter()) {
total_score += result.risk_score * weight;
weight_sum += weight;
}
if weight_sum > 0.0 {
total_score / weight_sum
} else {
0.0
}
}
}
Advanced Prevalidation Features
Machine Learning Integration
pub struct MlPrevalidator {
pub model_manager: ModelManager, // ML model management
pub feature_extractor: FeatureExtractor, // Feature extraction
pub anomaly_detector: AnomalyDetector, // Anomaly detection
pub pattern_predictor: PatternPredictor, // Pattern prediction
}
impl MlPrevalidator {
pub fn ml_validate_transaction(&self, tx: &SignedTx, state: &StateDB) -> Result<MlValidationResult, MlError> {
// 1. Extract features
let features = self.feature_extractor.extract_features(tx, state)?;
// 2. Anomaly detection
let anomaly_score = self.anomaly_detector.detect_anomaly(&features)?;
// 3. Pattern prediction
let pattern_prediction = self.pattern_predictor.predict_pattern(&features)?;
// 4. Risk assessment
let risk_assessment = self.assess_ml_risk(&features, anomaly_score, &pattern_prediction)?;
Ok(MlValidationResult {
anomaly_score,
predicted_pattern: pattern_prediction.pattern_type,
confidence: pattern_prediction.confidence,
risk_assessment,
ml_flags: self.generate_ml_flags(&risk_assessment),
})
}
fn extract_features(&self, tx: &SignedTx, state: &StateDB) -> Result<Vec<f64>, FeatureError> {
let mut features = Vec::new();
// Transaction features
features.push(tx.fee as f64);
features.push(tx.gas_limit as f64);
features.push(tx.call_data.len() as f64);
// Sender features
let sender_account = state.get_account(&tx.signer)?;
features.push(sender_account.balance as f64);
features.push(sender_account.nonce as f64);
features.push(sender_account.transaction_count as f64);
// Network features
features.push(self.get_network_gas_price()? as f64);
features.push(self.get_network_utilization()? as f64);
features.push(self.get_recent_block_time()? as f64);
// Temporal features
features.push(current_timestamp() as f64);
features.push(self.get_time_of_day()? as f64);
features.push(self.get_day_of_week()? as f64);
Ok(features)
}
}
Adaptive Threshold System
pub struct AdaptiveThresholdSystem {
pub threshold_manager: ThresholdManager, // Threshold management
pub performance_monitor: PerformanceMonitor, // Performance monitoring
pub network_analyzer: NetworkAnalyzer, // Network analysis
pub adjustment_policy: AdjustmentPolicy, // Adjustment policy
}
impl AdaptiveThresholdSystem {
pub fn adjust_validation_thresholds(&mut self, network_conditions: &NetworkConditions) -> Result<ThresholdAdjustment, ThresholdError> {
// 1. Analyze current performance
let current_performance = self.performance_monitor.get_current_performance()?;
// 2. Analyze network conditions
let network_analysis = self.network_analyzer.analyze_conditions(network_conditions)?;
// 3. Calculate required adjustments
let adjustments = self.calculate_threshold_adjustments(¤t_performance, &network_analysis)?;
// 4. Apply adjustments
self.threshold_manager.apply_adjustments(&adjustments)?;
Ok(adjustments)
}
fn calculate_threshold_adjustments(&self, performance: &PerformanceMetrics, network: &NetworkAnalysis) -> Result<ThresholdAdjustment, ThresholdError> {
let mut adjustments = ThresholdAdjustment::default();
// Adjust rejection thresholds based on network load
if network.utilization > 0.8 {
// High network load - be more selective
adjustments.risk_threshold *= 0.9; // Lower risk tolerance
adjustments.fee_threshold *= 1.1; // Higher fee requirement
adjustments.gas_threshold *= 0.95; // Stricter gas requirements
} else if network.utilization < 0.5 {
// Low network load - be more permissive
adjustments.risk_threshold *= 1.1; // Higher risk tolerance
adjustments.fee_threshold *= 0.9; // Lower fee requirement
adjustments.gas_threshold *= 1.05; // More lenient gas requirements
}
// Adjust based on performance metrics
if performance.rejection_rate > 0.3 {
// Too many rejections - relax thresholds
adjustments.risk_threshold *= 1.05;
adjustments.fee_threshold *= 0.95;
}
if performance.false_positive_rate > 0.1 {
// Too many false positives - adjust detection sensitivity
adjustments.anomaly_threshold *= 1.1;
adjustments.pattern_threshold *= 0.9;
}
Ok(adjustments)
}
}
Performance Optimization
Parallel Prevalidation
pub struct ParallelPrevalidator {
pub thread_pool: ThreadPool, // Thread pool
pub task_scheduler: TaskScheduler, // Task scheduling
pub result_aggregator: ResultAggregator, // Result aggregation
pub load_balancer: LoadBalancer, // Load balancing
}
impl ParallelPrevalidator {
pub fn validate_transaction_parallel(&self, tx: SignedTx, state: &StateDB) -> Result<PrevalidationResult, ParallelError> {
// 1. Split validation into parallel tasks
let syntactic_task = self.create_syntactic_task(tx.clone(), state.clone());
let semantic_task = self.create_semantic_task(tx.clone(), state.clone());
let economic_task = self.create_economic_task(tx.clone(), state.clone());
let security_task = self.create_security_task(tx.clone(), state.clone());
// 2. Execute tasks in parallel
let (syntactic_result, semantic_result, economic_result, security_result) = self.thread_pool.install(|| {
rayon::join(
|| syntactic_task.run(),
|| rayon::join(
|| semantic_task.run(),
|| rayon::join(
|| economic_task.run(),
|| security_task.run()
)
)
)
});
// 3. Aggregate results
let aggregated_result = self.result_aggregator.aggregate_results(
syntactic_result?,
(semantic_result?.0, semantic_result?.1),
(economic_result?.0, economic_result?.1),
security_result?
)?;
Ok(aggregated_result)
}
}
Caching System
pub struct PrevalidationCache {
pub result_cache: LruCache<Hash32, PrevalidationResult>, // Result cache
pub signature_cache: LruCache<[u8; 64], bool>, // Signature cache
pub pattern_cache: LruCache<Vec<u8>, PatternResult>, // Pattern cache
pub reputation_cache: LruCache<[u8; 32], ReputationScore>, // Reputation cache
}
impl PrevalidationCache {
pub fn get_cached_result(&mut self, tx_hash: &Hash32) -> Option<PrevalidationResult> {
self.result_cache.get(tx_hash).cloned()
}
pub fn cache_result(&mut self, tx_hash: Hash32, result: PrevalidationResult) {
self.result_cache.put(tx_hash, result);
}
pub fn calculate_cache_efficiency(&self) -> CacheEfficiencyMetrics {
let total_requests = self.result_cache.hits() + self.result_cache.misses();
CacheEfficiencyMetrics {
hit_rate: if total_requests > 0 {
self.result_cache.hits() as f64 / total_requests as f64
} else {
0.0
},
cache_size: self.result_cache.len(),
memory_usage: self.estimate_memory_usage(),
eviction_rate: self.calculate_eviction_rate(),
}
}
}
Monitoring and Metrics
Prevalidation Performance Metrics
pub struct PrevalidationMetrics {
pub total_validations: u64, // Total validations performed
pub rejection_rate: f64, // Transaction rejection rate
pub false_positive_rate: f64, // False positive rate
pub average_validation_time: Duration, // Average validation time
pub cache_hit_rate: f64, // Cache hit rate
pub ml_accuracy: f64, // ML model accuracy
pub security_incidents: u64, // Security incidents detected
pub economic_violations: u64, // Economic violations detected
}
impl PrevalidationMetrics {
pub fn calculate_effectiveness_score(&self) -> f64 {
let accuracy_weight = 0.4;
let efficiency_weight = 0.3;
let security_weight = 0.2;
let economic_weight = 0.1;
let accuracy_score = 1.0 - self.false_positive_rate;
let efficiency_score = self.cache_hit_rate;
let security_score = if self.security_incidents > 0 {
1.0 - (self.security_incidents as f64 / self.total_validations as f64)
} else {
1.0
};
let economic_score = if self.economic_violations > 0 {
1.0 - (self.economic_violations as f64 / self.total_validations as f64)
} else {
1.0
};
accuracy_weight * accuracy_score +
efficiency_weight * efficiency_score +
security_weight * security_score +
economic_weight * economic_score
}
}
Configuration
Prevalidation Configuration
pub struct PrevalidationConfig {
pub validation_layers: Vec<ValidationLayer>, // Validation layers
pub security_thresholds: SecurityThresholds, // Security thresholds
pub economic_parameters: EconomicParameters, // Economic parameters
pub ml_config: MlConfig, // ML configuration
pub cache_config: CacheConfig, // Cache configuration
pub performance_config: PerformanceConfig, // Performance configuration
}
impl Default for PrevalidationConfig {
fn default() -> Self {
Self {
validation_layers: vec![
ValidationLayer::Syntactic,
ValidationLayer::Semantic,
ValidationLayer::Economic,
ValidationLayer::Security,
],
security_thresholds: SecurityThresholds::default(),
economic_parameters: EconomicParameters::default(),
ml_config: MlConfig::default(),
cache_config: CacheConfig::default(),
performance_config: PerformanceConfig::default(),
}
}
}
This prevalidation architecture provides comprehensive transaction screening with multiple validation layers, ensuring network security and efficiency while maintaining high performance through parallel processing and intelligent caching.