Skip to main content

SIMD Optimization Architecture

SIMD Optimization Overview

Savitri Network implements SIMD (Single Instruction, Multiple Data) vectorization for high-performance transaction scoring and batch processing operations. The optimization provides 2-3x performance improvements for critical path operations while maintaining deterministic computation required for consensus.

Technology Choice Rationale

Why SIMD for Transaction Scoring

Problem Statement: Transaction scoring in high-throughput blockchain environments requires processing thousands of transactions per second with complex fee calculations and priority algorithms. Scalar processing becomes a bottleneck at scale.

Chosen Solution: SIMD vectorization using stable intrinsics for parallel processing of transaction batches.

Rationale:

  • Performance: 4 transactions processed per CPU cycle (AVX2) vs 1 transaction per cycle scalar
  • Determinism: Exact same results across different CPU architectures
  • Compatibility: Uses stable Rust intrinsics, no unstable features
  • Scalability: Linear performance scaling with batch size

Expected Results:

  • 2-3x speedup for transaction scoring operations
  • Reduced CPU utilization under high load
  • Lower transaction processing latency
  • Higher TPS capacity per validator node

Why Stable Intrinsics Over std::simd

Problem Statement: std::simd is unstable and requires nightly Rust compiler, incompatible with production environments requiring stable releases.

Chosen Solution: Target-specific feature detection with stable intrinsics (std::arch).

Rationale:

  • Stability: Works on stable Rust toolchain
  • Portability: Automatic fallback for non-SIMD architectures
  • Safety: Runtime feature detection prevents illegal instructions
  • Maintenance: No dependency on compiler feature flags

Expected Results:

  • Production-ready SIMD implementation
  • Cross-platform compatibility (x86_64, ARM64)
  • Graceful degradation on older hardware
  • Zero regression for non-SIMD systems

SIMD Architecture

Vectorization Strategy

pub struct SimdOptimizer {
pub batch_size: usize, // Optimal batch size
pub threshold: usize, // SIMD activation threshold
pub fallback_enabled: bool, // Scalar fallback enabled
pub performance_monitor: SimdPerformance, // Performance monitoring
}

impl SimdOptimizer {
pub fn should_use_simd(&self, data_size: usize) -> bool {
// Use SIMD only for batches larger than threshold
data_size >= self.threshold && self.is_simd_available()
}

pub fn is_simd_available(&self) -> bool {
// Runtime feature detection
#[cfg(target_arch = "x86_64")]
{
is_x86_feature_detected!("avx2") &&
is_x86_feature_detected!("fma")
}

#[cfg(target_arch = "aarch64")]
{
is_aarch64_feature_detected!("neon")
}

#[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
{
false
}
}
}

Transaction Score Vectorization

#[target_feature(enable = "avx2,fma")]
unsafe fn compute_score_simd_avx2(
fees: &[f64],
classes: &[TxClass],
weights: &AdaptiveWeights,
) -> Vec<f64> {
let mut scores = Vec::with_capacity(fees.len());

// Process 4 transactions at once (AVX2 width)
let chunks = fees.chunks_exact(4);
let remainder = chunks.remainder();

for (fee_chunk, class_chunk) in chunks.zip(classes.chunks_exact(4)) {
// Load 4 fees into SIMD register
let fee_vec = _mm256_loadu_pd(fee_chunk.as_ptr());

// Convert classes to priority multipliers
let priorities = Self::load_class_priorities_simd(class_chunk);

// Apply adaptive weights
let weight_vec = _mm256_set_pd(
weights.transaction_fee,
weights.system_priority,
weights.financial_priority,
weights.base_priority,
);

// Vectorized computation: fee * priority * weight
let weighted_fees = _mm256_mul_pd(fee_vec, priorities);
let scores_vec = _mm256_mul_pd(weighted_fees, weight_vec);

// Store results
_mm256_storeu_pd(scores.as_mut_ptr().add(scores.len()), scores_vec);
}

// Process remainder with scalar
for (fee, class) in remainder.iter().zip(classes.chunks_exact(4).remainder()) {
let score = Self::compute_score_scalar(*fee, *class, weights);
scores.push(score);
}

scores
}

ARM NEON Implementation

#[target_feature(enable = "neon")]
unsafe fn compute_score_simd_neon(
fees: &[f64],
classes: &[TxClass],
weights: &AdaptiveWeights,
) -> Vec<f64> {
let mut scores = Vec::with_capacity(fees.len());

// Process 2 transactions at once (NEON width)
let chunks = fees.chunks_exact(2);
let remainder = chunks.remainder();

for (fee_chunk, class_chunk) in chunks.zip(classes.chunks_exact(2)) {
// Load 2 fees into SIMD register
let fee_vec = vld1q_f64(fee_chunk.as_ptr());

// Convert classes to priority multipliers
let priorities = Self::load_class_priorities_neon(class_chunk);

// Vectorized computation
let weighted_fees = vmulq_f64(fee_vec, priorities);
let scores_vec = vmulq_f64(weighted_fees, vld1q_f64(&[weights.base_priority, weights.financial_priority]));

// Store results
vst1q_f64(scores.as_mut_ptr().add(scores.len()), scores_vec);
}

// Process remainder with scalar
for (fee, class) in remainder.iter().zip(classes.chunks_exact(2).remainder()) {
let score = Self::compute_score_scalar(*fee, *class, weights);
scores.push(score);
}

scores
}

Performance Optimization

Dynamic Threshold Optimization

pub struct AdaptiveThreshold {
pub base_threshold: usize, // Base threshold (32)
pub performance_history: VecDeque<PerformanceSample>, // Performance history
pub adjustment_factor: f64, // Threshold adjustment factor
}

impl AdaptiveThreshold {
pub fn calculate_optimal_threshold(&mut self, recent_performance: &PerformanceMetrics) -> usize {
// Analyze recent performance trends
let simd_efficiency = recent_performance.simd_speedup;
let overhead_ratio = recent_performance.overhead_ratio;

// Adjust threshold based on efficiency
let adjustment = if simd_efficiency < 1.2 {
// SIMD not providing significant benefit, increase threshold
self.base_threshold * 2
} else if simd_efficiency > 2.5 && overhead_ratio < 0.1 {
// SIMD highly efficient, can lower threshold
self.base_threshold / 2
} else {
self.base_threshold
};

// Clamp to reasonable bounds
adjustment.clamp(8, 128)
}
}

Memory Optimization

pub struct SimdMemoryManager {
pub buffer_pool: Vec<Vec<f64>>, // Pre-allocated buffers
pub alignment: usize, // Memory alignment
pub cache_optimized: bool, // Cache optimization enabled
}

impl SimdMemoryManager {
pub fn get_aligned_buffer(&mut self, size: usize) -> Vec<f64> {
// Try to reuse buffer from pool
if let Some(mut buffer) = self.buffer_pool.pop() {
if buffer.capacity() >= size {
buffer.clear();
buffer.resize(size, 0.0);
return buffer;
}
}

// Allocate new aligned buffer
let mut buffer = Vec::with_capacity(size);
buffer.resize(size, 0.0);

// Ensure proper alignment for SIMD operations
if buffer.as_ptr() as usize % self.alignment != 0 {
// Reallocate with proper alignment
let aligned_buffer = self.allocate_aligned(size);
buffer = aligned_buffer;
}

buffer
}

fn allocate_aligned(&self, size: usize) -> Vec<f64> {
let layout = std::alloc::Layout::from_size_align(
size * std::mem::size_of::<f64>(),
self.alignment,
).unwrap();

unsafe {
let ptr = std::alloc::alloc(layout);
let slice = std::slice::from_raw_parts_mut(ptr as *mut f64, size);
Vec::from_raw_parts(slice.as_mut_ptr(), size, size)
}
}
}

Integration with Execution Pipeline

SIMD-Aware Dispatcher

pub struct SimdAwareDispatcher {
pub base_dispatcher: ExecutionDispatcher, // Base dispatcher
pub simd_optimizer: SimdOptimizer, // SIMD optimization
pub performance_tracker: SimdPerformance, // Performance tracking
}

impl SimdAwareDispatcher {
pub fn schedule_transactions_simd(&mut self, transactions: &[SignedTx]) -> Result<Vec<SignedTx>, SchedulingError> {
// 1. Determine if SIMD should be used
let use_simd = self.simd_optimizer.should_use_simd(transactions.len());

// 2. Extract transaction data for vectorization
let (fees, classes): (Vec<f64>, Vec<TxClass>) = transactions.iter()
.map(|tx| (tx.fee as f64, self.classify_transaction(tx)))
.unzip();

// 3. Compute scores with appropriate method
let scores = if use_simd {
let start = Instant::now();
let result = self.compute_scores_simd(&fees, &classes)?;
let duration = start.elapsed();

// Track performance
self.performance_tracker.record_simd_performance(transactions.len(), duration);

result
} else {
let start = Instant::now();
let result = self.compute_scores_scalar(&fees, &classes)?;
let duration = start.elapsed();

// Track performance
self.performance_tracker.record_scalar_performance(transactions.len(), duration);

result
};

// 4. Sort and select transactions
self.select_transactions_by_score(transactions, &scores)
}
}

Performance Monitoring

SIMD Performance Metrics

pub struct SimdPerformanceMetrics {
pub simd_operations: u64, // Total SIMD operations
pub scalar_operations: u64, // Total scalar operations
pub avg_simd_speedup: f64, // Average SIMD speedup
pub cache_hit_rate: f64, // Cache hit rate
pub memory_efficiency: f64, // Memory efficiency
pub cpu_utilization: f64, // CPU utilization
}

impl SimdPerformanceMetrics {
pub fn calculate_efficiency_score(&self) -> f64 {
let speedup_weight = 0.4;
let cache_weight = 0.3;
let memory_weight = 0.2;
let cpu_weight = 0.1;

let speedup_score = (self.avg_simd_speedup - 1.0).min(3.0) / 3.0;
let cache_score = self.cache_hit_rate;
let memory_score = self.memory_efficiency;
let cpu_score = 1.0 - self.cpu_utilization;

speedup_weight * speedup_score +
cache_weight * cache_score +
memory_weight * memory_score +
cpu_weight * cpu_score
}
}

Real-time Performance Analysis

pub struct SimdPerformanceAnalyzer {
pub metrics_window: Duration, // Metrics time window
pub performance_history: VecDeque<PerformanceSnapshot>, // Performance history
pub optimization_suggestions: Vec<OptimizationSuggestion>, // Suggestions
}

impl SimdPerformanceAnalyzer {
pub fn analyze_performance(&mut self) -> AnalysisReport {
let recent_metrics = self.collect_recent_metrics();

AnalysisReport {
overall_efficiency: recent_metrics.calculate_efficiency_score(),
bottlenecks: self.identify_bottlenecks(&recent_metrics),
recommendations: self.generate_recommendations(&recent_metrics),
threshold_optimization: self.suggest_threshold_adjustments(&recent_metrics),
memory_optimization: self.suggest_memory_optimizations(&recent_metrics),
}
}

fn identify_bottlenecks(&self, metrics: &SimdPerformanceMetrics) -> Vec<Bottleneck> {
let mut bottlenecks = Vec::new();

if metrics.avg_simd_speedup < 1.5 {
bottlenecks.push(Bottleneck::LowSimdEfficiency);
}

if metrics.cache_hit_rate < 0.8 {
bottlenecks.push(Bottleneck::CacheMisses);
}

if metrics.memory_efficiency < 0.7 {
bottlenecks.push(Bottleneck::MemoryFragmentation);
}

bottlenecks
}
}

Testing and Validation

SIMD Determinism Testing

#[cfg(test)]
mod simd_tests {
use super::*;

#[test]
fn test_simd_vs_scalar_determinism() {
let mut rng = thread_rng();
let test_sizes = [1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 100];

for size in test_sizes {
// Generate test data
let fees: Vec<f64> = (0..size).map(|_| rng.gen_range(0.1..1000.0)).collect();
let classes: Vec<TxClass> = (0..size).map(|_| {
match rng.gen_range(0..4) {
0 => TxClass::Financial,
1 => TxClass::System,
2 => TxClass::Governance,
_ => TxClass::Standard,
}
}).collect();

let weights = AdaptiveWeights::default();

// Compute with both methods
let scalar_scores = compute_scores_scalar(&fees, &classes, &weights);
let simd_scores = compute_scores_simd(&fees, &classes, &weights);

// Verify results are identical
assert_eq!(scalar_scores.len(), simd_scores.len());
for (scalar, simd) in scalar_scores.iter().zip(simd_scores.iter()) {
assert!((scalar - simd).abs() < 1e-10,
"SIMD and scalar results differ by more than 1e-10: {} vs {}", scalar, simd);
}
}
}

#[test]
fn test_simd_performance_characteristics() {
let test_data = generate_test_transaction_batch(1000);
let weights = AdaptiveWeights::default();

// Benchmark scalar implementation
let scalar_start = Instant::now();
let _scalar_result = compute_scores_scalar(&test_data.fees, &test_data.classes, &weights);
let scalar_duration = scalar_start.elapsed();

// Benchmark SIMD implementation
let simd_start = Instant::now();
let _simd_result = compute_scores_simd(&test_data.fees, &test_data.classes, &weights);
let simd_duration = simd_start.elapsed();

// Verify performance improvement
let speedup = scalar_duration.as_nanos() as f64 / simd_duration.as_nanos() as f64;
assert!(speedup > 1.5, "SIMD should provide at least 1.5x speedup, got {:.2}x", speedup);

println!("SIMD speedup: {:.2}x", speedup);
println!("Scalar: {:?}", scalar_duration);
println!("SIMD: {:?}", simd_duration);
}
}

Configuration and Tuning

SIMD Configuration

pub struct SimdConfig {
pub enabled: bool, // SIMD enabled
pub threshold: usize, // Minimum batch size for SIMD
pub alignment: usize, // Memory alignment
pub buffer_pool_size: usize, // Buffer pool size
pub performance_monitoring: bool, // Performance monitoring enabled
pub auto_threshold_adjustment: bool, // Automatic threshold adjustment
}

impl Default for SimdConfig {
fn default() -> Self {
Self {
enabled: true,
threshold: 32, // Optimal for most workloads
alignment: 32, // AVX2 alignment requirement
buffer_pool_size: 100,
performance_monitoring: true,
auto_threshold_adjustment: true,
}
}
}

Runtime Tuning

impl SimdConfig {
pub fn tune_for_workload(&mut self, workload: &WorkloadCharacteristics) {
// Adjust threshold based on typical batch sizes
if workload.avg_batch_size < 16 {
self.threshold = 8; // Lower threshold for small batches
} else if workload.avg_batch_size > 100 {
self.threshold = 64; // Higher threshold for large batches
}

// Adjust buffer pool size based on memory pressure
if workload.memory_pressure > 0.8 {
self.buffer_pool_size = 20; // Reduce pool size under memory pressure
} else if workload.memory_pressure < 0.5 {
self.buffer_pool_size = 200; // Increase pool size with available memory
}

// Enable/disable based on CPU capabilities
self.enabled = self.is_simd_supported();
}
}

This SIMD optimization architecture provides significant performance improvements while maintaining the deterministic behavior required for blockchain consensus operations.